Alternative Development

Source Control Action Lower Passaic River Restoration Project

> Remedial Options Workgroup Meeting June 30, 2009

FFS Alternatives - As of October 2008

#	Alternative	DMM Scenario	Dredged Sediment Volume (MCY)	Cost in Billion \$
1	No Action	N/A	0	Minimal
2		CDF Disposal		1.3
3	Dredging	Off-site Treatment and Disposal	11	3.6
4		Decontamination and Beneficial Use		1.7
5		CDF Disposal		0.7
6	Capping	Off-site Treatment and Disposal	3.2	1.8
7		Decontamination and Beneficial Use		0.9
8		CDF Disposal		0.8
9	Capping with Navigation in Lower 1.9	Off-site Treatment and Disposal	4.2	2.2
10	miles	Decontamination and Beneficial Use		1.0

Revisions to Alternatives for 2009 FFS

- Reorganized remedial options & DMM scenarios:
 - 3 Alternatives, 3 DMM Scenarios
- Revised modeling indicates less dredging required to control flooding impacts. Pre-dredge for cap only.
 Include 6-in. "smoothing layer" over armor stone.
- Because CAD disposal creates less environmental impact, both CAD and CDF disposal are being analyzed in the FFS.

Summer 2009 - Current Alternatives

#	Alternative ^a	DMM Scenario	Dredged Sediment Volume (MCY)	Cost in Billion \$	Other Considerations	
1	No Action	N/A	0	Minimal	Existing level of risk	
	Doon	Deep	CAD/CDF Disposal ^b		1.3	Habitat impact, construction-phase impacts, long-term maintenance
2	Dredging with Backfill	Off-site Treatment and Disposal	11	3.7	Large on-land footprint, construction-phase impacts	
	With Backini	Decontamination and Beneficial Use		1.6	Large on-land footprint, emissions, construction-phase impacts	
	Capping with Dredging for Flooding & Navigation	CAD/CDF Disposal ^c	3.4	0.8	Habitat impact, long-term maintenance	
3		Off-site Treatment and Disposal		2.0	Large on-land footprint, long-term maintenance	
		Decontamination and Beneficial Use		0.9	Large on-land footprint, emissions, long-term maintenance	

Notes:

- a: All alternatives cause no additional flooding.
- b: Alternative 2 Cost provided for a CDF.
- c: Alternative 3 Cost provided for a CAD/CDF.

Sediment Transport Modeling Scenarios

- Thin Layer Cap
- Discrete Capping (3 scenarios)
- Construction-Phase Impacts (resuspension)
- Sequencing Runs (RMO-RM8 vs. RM8-RM12)

Gross Cycling Prevents Recovery

Depositional, Erosional and Net Sediment Volumes, 1989 to 2007

Conclusions:

- **Gross sediment** recycling ~4 X net deposition
- >80% of net deposition occurs below RM2
- Net deposition in RM2 to RM7 is less than 1/3 inch/yr

Sediment Stability Evaluation: Erosion Relative to 1989 Bathymetry

 Colored areas correspond to >= 70 percent probability of erosion of at least 3 inches relative to the 1989 surface

Sediment Stability Evaluation: Erosion Based on Multiple Bathymetric Comparisons

Areas in red correspond to \geq 70 percent probability of erosion for all combinations of bathymetric surveys

Conclusion: Erosion occurs nearly bank-tobank throughout the river

Presentation Outline

- Alternative Development & Conceptual Design Parameters
- Dredged Material Management Scenarios
- Analysis of Construction-Phase Impacts
- Cost Estimates
- Ongoing Activities

Highly Contaminated Material

- Near 80 Lister Avenue (between RM2.7-RM3.8 and RM4.2-RM4.4)
- Removed within containment
- Estimated volume of 350,000 cubic yards
- 200,000 cubic yards to be removed independently of the Source Control Action
 - 40,000 cubic yards upland
 - 160,000 cubic yards in a CDF

Conceptual Design: Dredging

- Mechanical dredging used as representative process option
- Conceptual design parameters:
 - Productivity: 2000 cy/day per dredge
 - Accuracy: 1-ft overdredge allowance
 - Residuals: 2-ft backfill
 - Resuspension: Minimize using BMPs
 - Side slopes: 3H:1V

Conceptual Design: Capping

- Engineered caps used as representative process option
- Conceptual design parameters:
 - Sand thickness: 2 ft.
 - Armor thickness: 18 in. (plus 6-in. filter layer)
 - Armor placement criteria: 3 in. max. erosion under 100-yr flow event
 - "Smoothing layer" in armored areas: 6 in. (plus 6in. filter layer). Applied to reduce roughness & flooding.

Conceptual Design: Capping

- Armor layout developed using hydrodynamic & sediment transport modeling
- Total of 21 acres armored

Conceptual Cap Design

Sand Cap

Bioturbation = 6"

Erosion = 6"

Consolidation/ Isolation = 12"

Total thickness = 2 ft

Armored Sand Cap

Smoothing layer = 6"

Filter = 6"

Armor = 18"

Filter = 6"

Consolidation/ Isolation = 18"

Total thickness = 4.5 ft

Mudflat Reconstruction Cap

Habitat = 12"

Consolidation/ Isolation = 12"

Total thickness = 2 ft

Cap Erosion and Flood Modeling Results

Note: Alternative 3 (Capping with Dredging for Flooding and Navigation) not modeled, but results are expected to be similar to constructing a cap at existing surface with smoothing layer (similar sediment surface, greater water depths).

Cross-Sections for Capping Alternative

Navigation

- RMO-RM1.2: 30 ft MLW (300 ft wide)
- RM1.2-RM1.9:16 ft MLW(300 ft wide)

RM1.9-RM8:
Minimum of 10 ft MLW
(200 ft wide)

Conceptual Design: Navigation in Capping Alternative

	FFS Alternative 3				
River Mile	Channel Width (ft)	Minimum Top of Cap Depth in Channel (ft MLW)	Channel Maintenance Planned		
RM0-RM1.2	300	31	✓		
RM1.2-RM1.9	300	19	✓		
RM1.9-RM2.5	200	13			
RM2.5-RM3.6	200	11			
RM3.6-RM4.6	200	10			
RM4.6-RM8	200	10			

Dredged Material Management (DMM) **Scenarios**

DMM Scenarios Incorporated Into FFS Alternatives

CAD/CDF Disposal

Off-site Treatment and Disposal

Local Treatment and Disposal or Beneficial Use

DMM Process Flow

http://www.pbworld.com/library/technical_papers/pdf/42_ContaminatedSedimentCDF.odf

DMM Process Flow (continued)

Nearshore CDF Concept

CAD Concept To be removed after **CAD** cell is capped **Water Treatment Plant** Final Grade = Existing Sediment Surface Contaminated Sediment Veneer **Final Cap CAD Cell** Single sheet pile wall Sealed single or containment system double sheet pile wall Not to Scale

CAD/CDF Siting Considerations

- Proximity to dredging site
- At least 100 ft from nearest navigation channel
- Draft for approach (need ~20ft @ MLW for scow/barge)
- Depth to bedrock (storage volume)
- Appropriate geological formation for sub-grade cell (red-brown clay or glacial till)
- Air draft
- Potential impacts to habitat
- Potential flooding impacts
- Quantity of contaminated sediment veneer
- Water quality (construction, operational)
- Pumping distance for hydraulic offloading

Ref: USACE, 2007

CDF Locations Evaluated in **Newark Bay EIS**

Source: USACE-NYD, Final EIS on the Newark Bay CDF, April 1997

Potential Newark Bay CDF/CAD Locations

CDF vs. CAD Comparison

Example: Alternative 3 (Capping) at Site 7 in Newark Bay

Design Parameter	CDF	CAD	
Site footprint	40 acres	40 acres	
Capacity	4 MCY (assumes 0% bulking)	3.0 MCY (assumes 10% bulking)	
Depth	70 ft below MLW		
Disposal of veneer	Upland		
Containment	Permanent, double sheet pile wall, bentonite fill	Double sheet pile wall with bentonite fill; removed after CAD is capped	
Division into internal cells	Yes (3 cells, center cell not fully excavated)	No (fully excavate entire footprint)	
Finished grade	+10 ft MLW (average adjacent land elevation)	-3.4 ft MLW	
Habitat impact	Permanent	Temporary	

Off-site Treatment and Disposal: Conceptual Design

http://clark.cleanharbors.com/ttServerRoot/Download/13603 FINAL Deer Park T X Facility FS 120408.pdf

- Passive dewatering with geotextile containers (tubes) in bermed, lined containment area
- Rail transportation assumed
- TSDFs in Utah, Texas, and Canada

Alternative	Dewatered Material Generation Rate	Total Offsite Treatment Capacity	Storage Required	Years of Storage After Dredging Complete
Alt 2: Dredging	~1.1 MCY/yr	0.25 MCY/yr	150 acres	20-30 years
Alt 3: Capping	~0.39 MCY/yr	0.25 MCY/yr	30 acres	4-6 years

Local Treatment and Disposal or Beneficial Use: Conceptual Design

- Passive dewatering with geotextile containers (tubes) in bermed, lined containment area
- Thermo-chemical process: >99% treatment efficiency 1
- Product can be mixed with Portland cement
- Treatment technologies for vapor phase lead need prove out

ENDESCO Clean Harbors, L.L.C. / GTI, 2008

Alternative	Dewatered Material Generation Rate	Thermal Treatment Capacity	Storage Required	Years of Storage After Dredging Complete
Alt 2: Dredging	~1.1 MCY/yr	0.76 MCY/yr	60 acres	4-6 years
Alt 3: Capping	~0.39 MCY/yr	0.50 MCY/yr	Minimal	Minimal

¹ENDESCO Clean Harbors, L.L.C. / Gas Technology Institute, 2008. Used Cement-Lock® process with Lower Passaic River sediments. Incorporated Ecomelt® production.

Off-site and Local Treatment: Upland Processing Facility Siting Considerations

- Sufficient acreage
- Suitable current land usage and zoning (industrial, low level of development). Sufficient distance from residential areas, public use/parkland, wetlands.
- Waterfront access (sufficient shoreline frontage, proximity of shoreline to a navigable channel)
- Road access (proximity to highways, routes that do not pass through residential areas)
- Rail access (proximity to rail lines/spurs)
- Soil characteristics to support expected loads

Ref: USACE, 2007

Construction-Phase Impacts

Evaluated:

- Resuspension, releases, residuals
- Impacts to biota/habitat
- Air quality
- Carbon footprint
- Odor, noise, lighting
- Accidents
- Project-generated traffic (including vessel traffic)
- Impacts to recreation & aesthetics

Drivers:

- Volume/inventory
- Construction duration
- Number of dredges
- DMM scenario

Construction-Phase Impacts

Annual Contaminant Releases:

Alternative	Dredging Duration (years)	Annual 2,3,7,8-TCDD Release, Compared to Existing 2,3,7,8-TCDD Mass Transport to Newark Bay (5.8 grams/year) ^a		
Alt 2: Dredging	7	6 times greater		
Alt 3: Capping	6	2 times greater		

a: Assumes 1% resuspension at the far field.

Recap of Current Alternatives

#	Alternative ^a	DMM Scenario	Dredged Sediment Volume (MCY)	Cost in Billion \$	Other Considerations	
1	No Action	N/A	0	Minimal	Existing level of risk	
	Doon	Deep	CAD/CDF Disposal ^b		1.3	Habitat impact, construction-phase impacts, long-term maintenance
2	Dredging with Backfill	Off-site Treatment and Disposal	11	3.7	Large on-land footprint, construction-phase impacts	
	With Backini	Decontamination and Beneficial Use		1.6	Large on-land footprint, emissions, construction-phase impacts	
	Capping with Dredging for Flooding & Navigation	CAD/CDF Disposal ^c	3.4	0.8	Habitat impact, long-term maintenance	
3		Off-site Treatment and Disposal		2.0	Large on-land footprint, long-term maintenance	
		Decontamination and Beneficial Use		0.9	Large on-land footprint, emissions, long-term maintenance	

Notes:

- a: All alternatives cause no additional flooding.
- b: Alternative 2 Cost provided for a CDF.
- c: Alternative 3 Cost provided for a CAD/CDF.

Ongoing FFS Evaluations

- Sediment Transport Modeling Scenarios
- CARP Modeling for contaminant trajectories
- Risk Assessment
 - Current HHRA & ERA undergoing QC
 - Future HHRA & ERA in progress, using output from CARP modeling
- Revision of Comprehensive CSM based on modeling output

DISCUSSION

